Specialization

Data analysis for astronomical telescopes using techniques from machine learning and advanced statistics. Expertise in computer vision, signal processing, differential equations, numerical methods and high-performance computing.

Major contributor to several 100,000+ line PYTHON / C telescope image reconstruction and data reduction codebases. Proficient with scientific PYTHON including libraries numpy, scipy, TensorFlow, and PyTorch.

Member of the POLARBEAR-1, Simons Array, Simons Observatory, BICEP/Keck and South Pole Telescope collaborations.

Education

Degrees

Ph.D. in Physics, University of California Berkeley	
A Measurement of the Degree Scale B-mode Cosmic Microwave Background Angular Power Spectrum	
from the POLARBEAR Experiment	
B.S. in Electrical and Computer Engineering with Honors, Carnegie Mellon University	2013
B.S. in Physics with Honors, Carnegie Mellon University	2013

Coursework

Coursera

Machine Learning

University of California Berkeley

Applications of Parallel Computers	Equilibrium Statistical Physics
Extragalactic Astronomy and Cosmology	General Relativity
Quantum Mechanics I & II	Electromagnetism
Quantum Field Theory	

Carnegie Mellon University

Analog Integrated Circuits I	Introduction to Nuclear and Particle Physics
Microelectronic Circuits	Advanced Quantum Physics I & II
RF Circuits and Antennas for Wireless Systems	General Relativity
Introduction to Computer Systems	Intermediate Electricity and Magnetism I & II
Electronic Devices and Analog Circuits	Physical Mechanics I & II
Signals and Systems	Linear Algebra
Structure and Design of Digital Systems	Probability Theory and Random Processes

Professional Experience

Kavli Postdoctoral Fellow, Stanford University

• Wrote and maintained several large and critical components of the South Pole Telescope (SPT-3G) instrument characterization and image reconstruction software

• Delivered instrument calibration data products with robustly understood uncertainties within tight deadlines	
• Coordinated sharing of code and data between independent analyses saving significant time and computational resources	
• Implemented a PyTorch convolutional variational auto-encoder framework to leverage unsupervised machine learning to identify anomalous features in telescope images	
• Co-organized the KIPAC statistics and machine learning journal club	
Graduate Student Researcher, University of California Berkeley	2014 - 2019
• Led the analysis of a large and complex astronomical dataset from the POLARBEAR experiment	
• Demonstrated a new approach to measuring the polarization of the cosmic microwave background; primary author of the main science results paper from a 50 - person collaboration	
• Designed, implemented, and analyzed massive end-to-end physical simulations of the experiment to search for spurious features in the dataset	
Graduate Student Instructor, University of California Berkeley	2013 - 2014
• Taught one semester of Physics 7B (electromagnetism) and Physics 7C (modern physics).	
Undergraduate Intern, European Center for Nuclear Research (CERN)	2012
• Implemented C++ physics simulations of a subsystem in the Compact Muon Solenoid (CMS) detector	
Undergraduate Intern, Thomas Jefferson National Lab	2010 - 2011
• Designed and built a prototype position-sensitive particle tracking detector	

Selected Publications

Journal articles

The BICEP/Keck Collaboration, Improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season, Physical Review Letters 127:15, https://arxiv.org/abs/2110.00483	2021h
J. Sobrin et al, The Design and Integrated Performance of SPT-3G, The Astrophysical Journal Supplement Series, Volume 258:2, arXiv:2106.11202 †	2021e
D. Dutcher et al, Measurements of the E-Mode Polarization and Temperature-E-Mode Correlation of the CMB from SPT-3G 2018 Data, Physical Review D 104:2, arXiv:2101.01684	2021a
The POLARBEAR Collaboration, A Measurement of the Degree-scale CMB B-mode Angular Power Spectrum with POLARBEAR, The Astrophysical Journal 897:1, arxiv:1910.02608 [†]	2020a
S. Takakura et al, <i>Performance of a Continuously Rotating Half-Wave Plate on the POLARBEAR Telescope</i> , Journal of Cosmology and Astroparticle Physics 2017 (05) 008, arXiv:1702.07111	2017a
The POLARBEAR Collaboration, A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales from 2 years of POLARBEAR Data, The Astrophysical Journal, 848:141, arXiv:1705.02907	2017b
T Adams, P Adzic, S Ahuja et al, Beam Test Evaluation of Electromagnetic Calorimeter Modules Made from Proton-Damaged PbWO4 Crystals, Journal of Instrumentation, 11 04 P04012	2016
The APEX Collaboration, Search for a new Gauge Boson in the A' Experiment (APEX), JLAB-PHY-11-1406 / SLAC-PUB-14491, arXiv:1108.2750	2011

Conference Proceedings

K.T.	Crowley, S. M. Sim	on, M.	Silva-Feaver, N.	Goeckner-Wald et al,	"Studies of Systematic	2018a
------	--------------------	--------	------------------	----------------------	------------------------	-------

Uncertainties for Simons Observatory: Detector Array Effects," Proc. SPIE 2018, arXiv:1808.10491 [†]	
J. Stevens, N. Goeckner-Wald, R. Keskitalo et al, "Designs for Next Generation CMB Survey Strategies from Chile," Proc. SPIE 2018, arXiv:1808.05131 ^{\dagger}	2018b
M. Salatino, J. Lashner, M. Gerbino, S. Simon, J. Didier et al, "Studies of Systematic Uncertainties for Simons Observatory: Polarization Modulator Related Effects," Proc. SPIE 2018, arXiv:1808.07442	2018c
† Lead author.	

Open Source Machine Learning Projects

Kaggle TensorFlow Great Barrier Reef Computer Vision Competition	2022
• Implemented a TensorFlow model based on the Faster R-CNN algorithm to detect invasive starfish in underwater images of the Great Barrier Reef	
• Demonstrated modestly successful performance in a challenging computer vision setting detecting small and partially occluded objects against a complex background; identified directions for future improvements	
$\bullet \ {\rm Code\ made\ publicly\ available\ at\ https://github.com/ngoecknerwald/starfish-perception-telescope}$	

Teaching and Mentoring

Courses

University of California Berkeley Physics 7C, Physics for Scientists and Engineers (Relativity and Quantum Mechanics), Graduate Student Instructor	2014 Spring
University of California Berkeley Physics 7B, Physics for Scientists and Engineers (Electromagnetism), Graduate Student Instructor	2013 Fall

Graduate Students Mentored

Jessica Avva Cyndia Yu George Halal Eric Yang Mario Aguilar Faundez Dominic Beck Kolen Cheung